
Smart Software Solutions
 for Embedded Success

Features

Applications

ebsnetinc.com
EBSnet, Inc. • 9 Goldsmith Street • Littleton, MA 01460 • Voice 978.486.4000 • Fax 978.486.4544 • 800.428.9340 (U.S. Only)

• Compact - 16k code, 6k data
• High Performance

(See reverse for details)
• Multi-threaded
• Supports Coldfire, PowerPC,

MPC5200, XScale, ARM
• Compatible with RTOS-32 from

On-Time Software

• Embedded and Realtime
commercial, military and
consumer applications

RTKernel-RISC is a powerful real-time multitasking scheduler for embedded systems
designed specifically for RISC platforms. RTKernel RISC is compact (about 16k code, 6k
data), fast, and offers excellent real-time response times. All RTKernel-RISC threads run
within a single program (single process, multi-threaded).

RTKERNEL-RISC THREADS

An RTKernel-RISC thread is implemented as a ‘C’ function. A program can dynamically
create threads using the appropriate kernel API calls. These threads are subsequently
executed in parallel with the main thread and any other threads.

Each thread has its own stack, a priority between I and 64, and a task state. Several threads
can be started executing the same code; however, each is allocated its own stack and thus
its own local variables. All threads have access to the program’s global data. Thus, shared
code and shared data are inherently implemented by RTKernel-RISC.

INTER-TASK COMMUNICATION
RTKernel-RISC offers three different mechanisms for inter-task communication:
• Semaphores allow the exchange of signals for activating and suspending threads.

RTKernel-RISC supports counting, binary, event, resource, and mutex semaphores.
Resource and mutex semaphores implement priority inheritance.

• Mailboxes (also known as queues or FIFO buffers) allow threads to exchange messages
asynchronously. The maximum number and size of messages can be configured for each
mailbox. High priority messages can be sent to a mailbox ahead of all others. Mailboxes
can also be used to send data from hardware interrupt handlers and threads.

• Message-passing is used for a synchronous exchange of messages. No data is buffered,
data is sent directly from one thread to another.

THE SCHEDULER

RTKernel-RISC’s scheduler is event-driven. It was developed specifically for real-time
requirements and adheres to the following rules:

• Priority Scheduling
Of all threads in state Ready, the thread with the highest priority runs.

• Round-Robin
If the kernel must choose from several Ready threads with the same priority, the thread
that hasn’t run for the longest time is activated.

• Priority Ordered Queues
If several threads are waiting for an event, they are activated upon the occurrence of that
event in sequence of their priorities.

• Deterministic Scheduling
With the exception of time-slice task switches, a task switch is only performed if rule I
would be violated.

The application can dynamically change thread priorities and it can turn preemptions and
time-slicing on and off at run-time.

RTKernel-RISC Real-Time Scheduler for RISC Processors

INTERRUPTS

The application’s interrupt handlers can suspend or activate threads. Interrupt handlers can be programmed completely in ‘C’ within
the application They can freely exchange signals or data with threads using semaphores or mailboxes. Semaphore or mailbox
operations may then initiate a task switch, if required. Interrupts from any hardware can be processed.

DEBUGGING

RTKernel-RISC is delivered in two versions. The Standard Version is optimized for minimum size and best performance, while the
Debug Version contains additional code for parameter and consistency checks at run-time. The Debug Version recognizes usage
errors and issues corresponding error messages. Moreover, the Debug Version offers numerous debugging aids. For example, the
current source code position of a thread can be displayed, all locked resources can be listed, or the CPU time requirements can be
determined for each thread and interrupt handler. An especially powerful tool is the Kernel Tracer; it can log kernel and application
events in real-time for off-line analysis.

As an additional aid to debugging, RTKernel-RISC (Debug and Standard Version) offers a number of informational functions. For
example, a list of all threads, semaphores, or mailboxes can be displayed, or the state of a specific thread can be queried. Further-
more, RTKernel-RISC keeps statistics of the stack usage of all threads and interrupt handlers.

RTKERNEL-32 COMPATIBILITY

With a few exceptions Rtkernel-RISC is compatible with RTKernel-32. RTKernel-32 is part of the RTOS-32 development suite for
protected mode X86. RTOS-32 has a large installed base and worldwide reputation for rock solid value and reliability.

SUPPLEMENTAL MODULES

RTKernel-RISC is supplied with the following supplemental modules, always delivered in full source code:

• FineTime - high resolution time measurement

• Clock - timer interrupt management

• Console - Serial and Telnet (requires EBSnet’s TCP-IP stack) based console drivers

• QUICC - Full support for ethernet and UART with the 860 QUICC

• Board Support - Embedded Planet, Motorolla MBX, ADS, FADS.

OPTIONAL MODULES

Tightly integrated versions of the EBSnet’s IPv4/IPv6 network stack and ERTFS DOS compatible file system packages are available
for RTKernel-RISC.

20MHz 33MHz 120MHZ 24MHz RTKernel
386EX 486 Pentium 860 Operation

43 5 0.73 15 Round-Robin task switch
79 10 1.61 20 Semaphore task switch
37 6 1.18 16 Semaphore Signal
25 4 1.24 14 Semaphore Wait

100 13 3.13 23 Task activation (Signal, Wait)
31 12 3.95 22 Store data in a mailbox
30 10 2.77 20 Retrieve data from a mailbox
96 12 2.50 22 Task-to-task communication

107 18 4.03 38 Task-to-mailbox-to-task-communication

RTKERNEL-RISC PERFORMANCE DATA
RTKernel RISC offers excellent performance. It comes with a benchmark program that may be used to measure its performance on any computer. The
table to the right gives some results for four typical X86 based target computers and for a 24 MHz MPC860 processor.
Note: Times are given in µs • Note: Times may vary due to instruction caching

